Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N-(2,4-Dimethylphenyl)succinimide

B. S. Saraswathi, ${ }^{\text {a }}$ B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro ${ }^{\text {b }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 11 March 2010; accepted 15 March 2010

Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \mathrm{~A}$; R factor $=0.041 ; \omega R$ factor $=0.113$; data-to-parameter ratio $=7.3$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$, the dihedral angle between the benzene ring and the imide segment is $85.7(1)^{\circ}$. In the crystal, the molecules are packed into zigzag chains parallel to the a axis.

Related literature

For our study of the effect of ring and side-chain substitutions on the structures of biologically significant compounds, see: Gowda et al. (2007); Saraswathi et al. (2010a,b).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2} \quad M_{r}=203.23$

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.1461$ (7) A
$Z=4$
$b=11.182$ (2) \AA
$\mathrm{Cu} K \alpha$ radiation
$c=13.676$ (2) A
$V=1092.8(3) \AA^{3}$
mm
$T=299 \mathrm{~K}$
$0.50 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
2947 measured reflections
1152 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.113$
$S=1.06$
1152 reflections
157 parameters

987 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
3 standard reflections every 120 min intensity decay: 1.0%

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2021).

References

Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands. Gowda, B. T., Kozisek, J., Svoboda, I. \& Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.
Saraswathi, B. S., Gowda, B. T., Foro, S. \& Fuess, H. (2010a). Acta Cryst. E66, o325.
Saraswathi, B. S., Gowda, B. T., Foro, S. \& Fuess, H. (2010b). Acta Cryst. E66, o390.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.

supplementary materials

N-(2,4-Dimethylphenyl)succinimide

B. S. Saraswathi, B. T. Gowda, S. Foro and H. Fuess

Comment

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2007; Saraswathi et al., 2010a,b), the crystal structure of N, N-(2,4-dimethylphenyl)succinimide has been determined (Fig. 1). The dihedral angle between the benzene ring and the imide segment in the molecule is 85.7 (1) ${ }^{\circ}$.

The torsional angles of the groups, $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7, \mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7, \mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$ in the molecule are $-97.8(3)^{\circ}, 80.0(3)^{\circ}, 88.9(3)^{\circ}$ and $-93.4(3)^{\circ}$, respectively, while the torsional angles of the groups, $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1, \mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1, \mathrm{O} 2-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$ are $3.2(4)^{\circ},-178.6(2)^{\circ},-7.2(4)^{\circ}$ and $173.0(2)^{\circ}$, respectively.

The packing of molecules into zigzag chains is shown in Fig.2.

Experimental

The solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with the solution of 2,4-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4-dimethylaniline. The resultant solid N-(2,4-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.
N-(2,4-Dimethylphenyl)succinamic acid was heated for 2 h and then allowed to cool slowly to room temperature to get the compound, N-(2,4-dimethylphenyl)succinimide. The purity of the compound was checked and characterized by its infrared spectra.

The rod like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms of the CH_{3} groups were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.96 \AA$. The other H atoms were located in a difference map and their position refined to $\mathrm{C}-\mathrm{H}=0.91$ (3)-1.06 (3) \AA. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the $\Delta \mathrm{f}^{\prime \prime}$ term set to zero.

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Molecular packing of the title compound.

N-(2,4-Dimethylphenyl)succinimide

Crystal data

$$
\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}
$$

$F(000)=432$

$$
M_{r}=203.23
$$

$D_{\mathrm{x}}=1.235 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=7.1461$ (7) \AA
$b=11.182(2) \AA$
$c=13.676(2) \AA$
$V=1092.8(3) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=5.1-23.4^{\circ}$
$\mu=0.68 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Rod, colourless
$0.50 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
graphite
$\omega / 2 \theta$ scans
2947 measured reflections
1152 independent reflections
987 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.065 \\
& \theta_{\max }=66.9^{\circ}, \theta_{\min }=5.1^{\circ} \\
& h=-3 \rightarrow 8 \\
& k=-13 \rightarrow 13 \\
& l=0 \rightarrow 16 \\
& 3 \text { standard reflections every } 120 \mathrm{~min} \\
& \text { intensity decay: } 1.0 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.113$
$S=1.06$
1152 reflections
157 parameters
0 restraints

H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0693 P)^{2}+0.082 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.011$
$\Delta \rho_{\max }=0.12$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$-0.0480(4)$	$0.0411(2)$	$0.04393(17)$	$0.0377(6)$
C2	$-0.2151(4)$	$-0.0128(2)$	$0.07236(18)$	$0.0410(6)$
C3	$-0.2763(4)$	$-0.1082(2)$	$0.0153(2)$	$0.0461(6)$
H3	$-0.400(5)$	$-0.144(3)$	$0.034(2)$	0.055^{*}
C4	$-0.1827(4)$	$-0.1484(2)$	$-0.06581(18)$	$0.0469(6)$
C5	$-0.0181(4)$	$-0.0909(3)$	$-0.0921(2)$	$0.0488(7)$
H5	$0.042(5)$	$-0.111(3)$	$-0.153(2)$	0.059^{*}
C6	$0.0488(4)$	$0.0035(3)$	$-0.0372(2)$	$0.0462(7)$
H6	$0.184(5)$	$0.035(3)$	$-0.049(2)$	0.055^{*}
C7	$-0.0064(4)$	$0.2593(2)$	$0.06994(18)$	$0.0429(6)$
C8	$0.0891(5)$	$0.3392(2)$	$0.1425(2)$	$0.0483(7)$
H8A	$0.164(5)$	$0.390(3)$	$0.107(2)$	0.058^{*}
H8B	$-0.013(5)$	$0.391(3)$	$0.1798(19)$	0.058^{*}
C9	$0.1992(5)$	$0.2553(3)$	$0.2077(2)$	$0.0478(7)$
H9A	$0.182(5)$	$0.264(3)$	$0.273(3)$	0.057^{*}
H9B	$0.325(5)$	$0.267(3)$	$0.193(2)$	0.057^{*}
C10	$0.1393(4)$	$0.1310(2)$	$0.17959(17)$	$0.0427(6)$
C11	$-0.3240(5)$	$0.0311(3)$	$0.1583(2)$	$0.0581(8)$
H11A	-0.3491	0.1150	0.1507	0.070^{*}
H11B	-0.2529	0.0185	0.2169	0.070^{*}
H11C	-0.4400	-0.0118	0.1625	0.070^{*}
C12	$-0.2569(6)$	$-0.2502(3)$	$-0.1256(2)$	$0.0683(10)$
H12A	-0.2704	-0.3197	-0.0849	0.082^{*}
H12B	-0.1714	-0.2674	-0.1779	0.082^{*}
H12C	-0.3765	-0.2288	-0.1523	0.082^{*}

N1	$0.0217(3)$	$0.14153(17)$	$0.09856(13)$	$0.0376(5)$
O1	$-0.0975(3)$	$0.28747(18)$	$-0.00034(16)$	$0.0666(7)$
O2	$0.1797(4)$	$0.03828(17)$	$0.21710(15)$	$0.0634(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0370(13)$	$0.0333(12)$	$0.0428(12)$	$-0.0018(10)$	$-0.0027(11)$	$0.0014(10)$
C2	$0.0362(13)$	$0.0422(12)$	$0.0447(12)$	$-0.0015(11)$	$0.0014(12)$	$0.0064(10)$
C3	$0.0418(14)$	$0.0410(13)$	$0.0554(14)$	$-0.0095(12)$	$-0.0025(13)$	$0.0064(11)$
C4	$0.0557(16)$	$0.0388(12)$	$0.0462(13)$	$-0.0038(13)$	$-0.0092(13)$	$0.0017(11)$
C5	$0.0505(15)$	$0.0511(15)$	$0.0448(13)$	$0.0000(13)$	$0.0040(14)$	$-0.0067(12)$
C6	$0.0380(14)$	$0.0486(15)$	$0.0521(14)$	$-0.0044(12)$	$0.0055(13)$	$-0.0029(11)$
C7	$0.0385(13)$	$0.0368(12)$	$0.0534(13)$	$0.0039(11)$	$-0.0018(13)$	$-0.0007(11)$
C8	$0.0501(16)$	$0.0375(13)$	$0.0571(15)$	$-0.0026(13)$	$-0.0003(15)$	$-0.0054(12)$
C9	$0.0444(15)$	$0.0526(15)$	$0.0463(14)$	$-0.0084(14)$	$-0.0032(14)$	$-0.0062(12)$
C10	$0.0390(13)$	$0.0472(14)$	$0.0419(12)$	$-0.0021(12)$	$-0.0006(11)$	$-0.0001(11)$
C11	$0.0522(17)$	$0.0627(17)$	$0.0595(16)$	$-0.0011(16)$	$0.0141(15)$	$-0.0013(14)$
C12	$0.083(3)$	$0.0562(17)$	$0.0657(17)$	$-0.0156(18)$	$-0.0154(19)$	$-0.0090(15)$
N1	$0.0353(11)$	$0.0353(10)$	$0.0422(10)$	$-0.0008(9)$	$-0.0031(9)$	$-0.0015(8)$
O1	$0.0745(15)$	$0.0501(12)$	$0.0754(12)$	$0.0086(11)$	$-0.0306(13)$	$0.0057(11)$
O2	$0.0710(15)$	$0.0525(12)$	$0.0665(12)$	$-0.0038(11)$	$-0.0214(12)$	$0.0138(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.373(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.393(4)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.438(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(4)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.493(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.372(4)$
$\mathrm{C} 3-\mathrm{H} 3$	$1.00(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(4)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.498(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.381(4)$
$\mathrm{C} 5-\mathrm{H} 5$	$0.97(3)$
$\mathrm{C} 6-\mathrm{H} 6$	$1.04(3)$
$\mathrm{C} 7-\mathrm{O} 1$	$1.203(3)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.388(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.499(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$121.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$119.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.4(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$121.6(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11$	$122.0(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.5(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$120.1(17)$

C8-C9	$1.514(4)$
C8-H8A	$0.92(3)$
C8-H8B	$1.06(3)$
C9-C10	$1.505(4)$
C9-H9A	$0.91(3)$
C9-H9B	$0.93(4)$
C10-O2	$1.192(3)$
C10-N1	$1.396(3)$
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
C12-H12A	0.9600
C12-H12B	0.9600
C12-H12C	0.9600
H8A-C8-H8B	$108(3)$
C10-C9-C8	$105.9(2)$
C10-C9-H9A	$108(2)$
C8-C9-H9A	$116(2)$
C10-C9-H9B	$110(2)$
C8-C9-H9B	$106.8(19)$
H9A-C9-H9B	$109(3)$
O2-C10-N1	$124.1(2)$

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	$116.3(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12$	$121.2(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12$	$120.7(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	$120(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	$120(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.0(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	$119.3(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$119.7(16)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.5(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$128.3(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$108.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$104.9(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	$106.3(19)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	$113(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	$109.2(18)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	$114.2(15)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.2(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.9(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$-177.6(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$0.0(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.9(4)$
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12$	$-178.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.5(4)$
$\mathrm{C} 12-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.4(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.2(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-173.9(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$8.1(3)$

$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$128.7(2)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$	$107.2(2)$
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 10$	$113.0(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$122.9(2)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$	$123.7(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	$-8.4(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 1$	$-173.7(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 10$	$6.0(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 10$	$177.2(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-4.6(3)$
C8-C7-N1-C1	$3.2(4)$
O2-C10-N1-C7	$-178.6(2)$
C9-C10-N1-C7	$178.8(3)$
O2-C10-N1-C1	$-0.9(3)$
C9-C10-N1-C1	$-7.2(4)$
C6-C1-N1-C7	$173.0(2)$
C2-C1-N1-C7	$80.0(3)$
C6-C1-N1-C10	$-97.8(3)$
C2-C1-N1-C10	$-93.4(3)$
	$88.9(3)$

supplementary materials

Fig. 1

Fig. 2

